sct_denoising_onlm¶
Utility function to denoise images. Return the denoised image and also the difference between the input and the output. The denoising algorithm is based on the Non-local means methods (Pierrick Coupe, Jose Manjon, Montserrat Robles, Louis Collins. “Adaptive Multiresolution Non-Local Means Filter for 3D MR Image Denoising” IET Image Processing, Institution of Engineering and Technology, 2011). The implementation is based on Dipy (https://dipy.org/).
usage: sct_denoising_onlm -i <file> [-h] [-p {Rician,Gaussian}] [-d <int>]
[-std <float>] [-o <str>] [-r {0,1}] [-v <int>]
MANDATORY ARGUMENTS¶
- -i
Input NIFTI image to be denoised. Example:
image_input.nii.gz
OPTIONAL ARGUMENTS¶
- -p
Possible choices: Rician, Gaussian
Type of assumed noise distribution. Default is: Rician.
Default: “Rician”
- -d
Threshold value for what to be considered as noise. The standard deviation of the noise is calculated for values below this limit. Not relevant if
-std
value is precised. Default:80
.Default: 80
- -std
Standard deviation of the noise. If not specified, it is calculated using a background of point of values below the threshold value (parameter
-d
).- -o
Name of the output NIFTI image.
- -r
Possible choices: 0, 1
Remove temporary files. Specify 0 to get access to temporary files.
Default: 1
- -v
Possible choices: 0, 1, 2
Verbosity. 0: Display only errors/warnings, 1: Errors/warnings + info messages, 2: Debug mode
Default: 1