Computing DTI for motion corrected dMRI data¶
Here, we compute the diffusion tensor metric images. SCT relies on the excellent dipy
library for computing dMRI metrics [Garyfallidis et al., Front Neuroinform 2014].
sct_dmri_compute_dti -i dmri_moco.nii.gz -bval bvals.txt -bvec bvecs.txt
- Input arguments:
-i
: The input dMRI image.-bval
: A text file containing a b-value for each volume in the dMRI image, indicating the diffusion weightings for each of the volumes in the dMRI image.-bvec
: A text file with three lines, each containing a value for each volume in the input image. Together, the the three sets of values represent the(x, y, z)
coordinates of the b-vectors, which indicate the direction of the diffusion encoding for each volume of the dMRI image.
Note
You can also supply the -method restore
option to estimate the tensors using “RESTORE: robust estimation of tensors by outlier rejection” [Chang, Magn Reson Med 2005].
- Output files/folders:
dti_FA.nii.gz
: Fractional anisotropy (FA) diffusion tensor image.dti_AD.nii.gz
: Axial diffusivity (AD) diffusion tensor image.dti_MD.nii.gz
: Mean diffusivity (MD) diffusion tensor image.dti_RD.nii.gz
: Radial diffusivity (RD) diffusion tensor image.
Now that we have the diffusion tensor images, we can move on to extracting DTI metrics from specific regions of the image.